By Topic

Effects on contact resistance of passing electrical current through wiping palladium contacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhuan-Ke Chen ; Dept. of Electr. Eng., Keio Univ., Yokohama, Japan ; Karasawa, K. ; Sawa, K.

A study has been carried out to evaluate the effect of passing electrical current through wiping palladium contacts. Different magnitudes of dc current, from 0 to 4 A, are used, and at 0 A the wipe amplitudes change from 50 μm to 1 mm. Two types of contact resistance are examined: one is dynamic contact resistance monitored and stored during wiping by a digital oscilloscope, and the other is static contact resistance measured at the start of sliding by a digital voltmeter. In light of dynamic contact resistance measurements we propose a tentative mechanism for explaining the contact resistance degrading process; the comparison of static contact resistance during wiping with and without current demonstrates that passing electrical current through the wiping contacts can restrict the contact resistance degradation. This occurs by a self-cleaning action which scrapes the wear debris accumulated at the end of the wear track far away from the contact spot caused by thermal expansion. The evidence demonstrates that the critical wiping number, (N c), where the contact resistance begins to increase rapidly, is strongly dependent on the wipe amplitude at 0 A, but slightly affected by current. AES analysis results show that oxides mainly exist within the wear track, while polymers concentrate at the ends of the wear track

Published in:

Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on  (Volume:18 ,  Issue: 3 )