By Topic

Hierarchical mixture clustering and its application to GMM based text independent speaker identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Saeidi ; Iranian Research Institute for Electrical Engineering, Narmak, Tehran, I. R. Iran ; H. R. Sadegh Mohammadi ; T. Ganchev ; R. D. Rodman

In this paper, we propose a hierarchical mixture clustering method and investigate its application for complexity reduction of a GMM based speaker identification system. We show that by using GMM-HMC one can cluster speakers more accurately than that of a sorted GMM with the same acceleration rate. The system was tested on a universal background model-Gaussian mixture model with KL-divergence as the distance measure. While the proposed systempsilas performance is slightly inferior to the baseline system, its comparatively smaller computational load provides the potential to develop systems with higher performance.

Published in:

Telecommunications, 2008. IST 2008. International Symposium on

Date of Conference:

27-28 Aug. 2008