By Topic

Monocular visual odometry in urban environments using an omnidirectional camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tardif, J.-P. ; GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA ; Pavlidis, Y. ; Daniilidis, K.

We present a system for monocular simultaneous localization and mapping (mono-SLAM) relying solely on video input. Our algorithm makes it possible to precisely estimate the camera trajectory without relying on any motion model. The estimation is completely incremental: at a given time frame, only the current location is estimated while the previous camera positions are never modified. In particular, we do not perform any simultaneous iterative optimization of the camera positions and estimated 3D structure (local bundle adjustment). The key aspect of the system is a fast and simple pose estimation algorithm that uses information not only from the estimated 3D map, but also from the epipolar constraint. We show that the latter leads to a much more stable estimation of the camera trajectory than the conventional approach. We perform high precision camera trajectory estimation in urban scenes with a large amount of clutter. Using an omnidirectional camera placed on a vehicle, we cover one of the longest distance ever reported, up to 2.5 kilometers.

Published in:

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on

Date of Conference:

22-26 Sept. 2008