By Topic

Control methods for guidance virtual fixtures in compliant human-machine interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Panadda Marayong ; Department of Mechanical and Aerospace Engineering, California State University, Long Beach, 90840, USA ; Gregory D. Hager ; Allison M. Okamura

This work focuses on the implementation of a vision-based motion guidance method, called virtual fixtures, on admittance-controlled human-machine cooperative robots with compliance. The robot compliance here refers to the structural elastic deformation of the device. The high mechanical stiffness and non-backdrivability of a typical admittance-controlled robot allow for slow and precise motions, making it highly suitable for tasks that require accuracy near human physical limits, such as microsurgery. However, previous experiments have shown that even small robot compliance degraded virtual fixture performance, especially at the micro scale. In this work, control methods to minimize the effect of robot compliance on virtual fixture performance were developed for admittance-controlled cooperative systems. Based on a linear model of the robot dynamics, we applied a Kalman filter to integrate the measurements obtained from the camera and encoders to estimate the robot end-effector position. A partitioned control law was used to achieve end-effector trajectory following on the desired velocity commanded by the admittance and virtual fixture control laws. The effectiveness of the Kalman filter and the controller was validated on a one degree-of-freedom admittance-controlled cooperative testbed.

Published in:

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

22-26 Sept. 2008