Cart (Loading....) | Create Account
Close category search window
 

Development of a real-time instrument tracking system for enabling the musical interaction with the Waseda Flutist Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Petersen, K. ; Grad. Sch. of Adv. Sci. & Eng., Waseda Univ., Tokyo ; Solis, J. ; Takanishi, A.

The aim of this paper is to create an interface for human-robot interaction. Specifically, musical performance parameters (i.e. vibrato expression) of the Waseda Flutist Robot No.4 Refined IV (WF-4RIV) are to be manipulated. Our research is focused on enabling the WF-4RIV to interact with human players (musicians) in a natural way. In this paper, as a first approach, a vision processing algorithm, that is able to track the 3D-orientation and position of a musical instrument, was developed. In particular, the robot acquires image data through two cameras attached to its head. Using color histogram matching and a particle filter, the position of the musicianpsilas hands on the instrument are tracked. Analysis of this data determines orientation and location of the instrument. These parameters are mapped to manipulate the musical expression of the WF-4RIV, more specifically sound vibrato and volume values. We present preliminary experiments to determine if the robot may dynamically change musical parameters while interacting with a human player (i.e. vibrato etc.). From the experimental results, we may confirm the feasibility of the interaction during a performance, although further research must be carried out to consider the physical constraints of the flutist robot.

Published in:

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on

Date of Conference:

22-26 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.