Cart (Loading....) | Create Account
Close category search window
 

A complementary filter for attitude estimation of a fixed-wing UAV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Euston, M. ; Dept. of Eng., Australian Nat. Univ., Canberra, ACT ; Coote, P. ; Mahony, R. ; Jonghyuk Kim
more authors

This paper considers the question of using a nonlinear complementary filter for attitude estimation of fixed-wing unmanned aerial vehicle (UAV) given only measurements from a low-cost inertial measurement unit. A nonlinear complementary filter is proposed that combines accelerometer output for low frequency attitude estimation with integrated gyrometer output for high frequency estimation. The raw accelerometer output includes a component corresponding to airframe acceleration, occurring primarily when the aircraft turns, as well as the gravitational acceleration that is required for the filter. The airframe acceleration is estimated using a simple centripetal force model (based on additional airspeed measurements), augmented by a first order dynamic model for angle-of-attack, and used to obtain estimates of the gravitational direction independent of the airplane manoeuvres. Experimental results are provided on a real-world data set and the performance of the filter is evaluated against the output from a full GPS/INS that was available for the data set.

Published in:

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on

Date of Conference:

22-26 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.