By Topic

GPS accuracy improvement by satellite selection using omnidirectional infrared camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Meguro, J. ; Grad. Sch. of Sci. & Eng., Waseda Univ., Tokyo ; Murata, T. ; Takiguchi, J. ; Amano, Y.
more authors

This paper describes a precision positioning technique that can be applied to vehicles in urban areas. The proposed technique mitigates GPS multipath by means of an omnidirectional infrared (IR) camera that can eliminate the need for invisible satellites (a satellite detected by the receiver but without LOS (Line Of Sight)) by using IR images. Some simple GPS multipath mitigation techniques such as installation of antennas away from buildings and using choke ring antennas are well known. Further, various correlator techniques can also be employed. However, when a direct signal cannot be received by the antenna, these techniques do not provide satisfactory results because they presume that the antenna chiefly receives direct signals. On the other hand, the proposed technique can mitigate GPS multipath even if a direct signal cannot be received because it can recognize the surrounding environment by means of an omnidirectional IR camera. With the IR camera, the sky appears distinctively dark; this facilitates the detection of the borderline between the sky and the surrounding buildings, which are captured in white, due to the difference in the atmospheric transmittance rate between visible light and the IR rays. Positioning is performed only with visible satellites having less multipath errors, and without using invisible satellites. With the proposed system, static and kinematic evaluations in which invisible satellites are discriminated through observation using an omnidirectional IR camera are conducted. Hence, signals are received even if satellites are hidden behind buildings; furthermore, exclusion of satellites having large errors from the positioning computation becomes possible. The evaluation results confirm the effectiveness of the proposed technique and the feasibility of highly accurate positioning.

Published in:

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on

Date of Conference:

22-26 Sept. 2008