By Topic

Genetic algorithm-based PCA eigenvector selection and weighting for automated identification of dementia using FDG-PET imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong Xia ; Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information, Technologies, University of Sydney, Australia ; Lingfeng Wen ; Eberl, S. ; Fulham, M.
more authors

Parametric FDG-PET data offer the potential for an automated identification of the different dementia syndromes. Principal component analysis (PCA) can be used for feature extraction in FDG-PET. However, standard PCA is not always successful in delineating the features that have the best discrimination ability. We report a genetic algorithm-based method to identify an optimal combination of eigenvectors so that the resultant features are capable of successfully separating patients with suspected Alzheimer's disease and frontotemporal dementia from normal controls. We compared our approach with standard PCA on a set of 210 clinical cases and improved the performance in separating the dementia types with an accuracy of 90.0% and a Kappa statistic of 0.849. There was very good agreement between the automated technique and the diagnosis given by clinicians.

Published in:

Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE

Date of Conference:

20-25 Aug. 2008