By Topic

Computer aided diagnosis of fatty liver ultrasonic images based on support vector machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Guokuan Li ; School of Computer Science and Technology, Huazhong Univ. of Sci. & Tech. and Key Lab. for Image Processing & Intelligent, Control of Ministry of Education, Wuhan, China ; Yu Luo ; Wei Deng ; Xiangyang Xu
more authors

B-scan ultrasound is the primary means for the diagnosis of fatty liver. However, due to use of various ultrasound equipments, poor quality of ultrasonic images and physical differences of patients, fatty liver diagnosis is mainly qualitative, and often depends on the subjective judgment of technicians and doctors. Therefore, computer-aided feature extraction and quantitative analysis of liver B-scan ultrasonic images will help to improve clinical diagnostic accuracy, repeatability and efficiency, and could provide a measure for severity of hepatic steatosis. This paper proposed a novel method of fatty liver diagnosis based on liver B-mode ultrasonic images using support vector machine (SVM). Fatty liver diagnosis was transformed into a pattern recognition problem of liver ultrasound image features. According to the different characteristics of fatty liver and healthy liver, important image features were extracted and selected to distinguish between the two categories. These features could be represented by near-field light-spot density, near-far-field grayscale ratio, grayscale co-occurrence matrix, and neighborhood gray-tone difference matrix (NGTDM). A SVM classifier was modeled and trained using the clinical ultrasound images of both fatty liver and normal liver. It was then exploited to classify normal and fatty livers, achieving a high recognition rate. The diagnostic results are satisfactorily consistent with those made by doctors. This method could be used for computer-aided diagnosis of fatty liver, and help doctors identify the fatty liver ultrasonic images rapidly, objectively and accurately.

Published in:

2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

20-25 Aug. 2008