By Topic

A real-time ECG data compression algorithm for a digital holter system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sangjoon Lee ; Department of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul, Korea ; Jong-Ho Lee

This paper describes a real time ECG compression algorithm for a digital holter system. Proposed algorithm consists of five main procedures. First procedure is to differentiate signals, second is to choose a period of the differentiated signals and store them in memory, third is to perform the DCT(Discrete Cosine Transform) on the stored data, fourth is to apply a window filter, and fifth procedure is to apply Huffman Coding compression method on the data. This developed algorithm has been tested by applying 12 ECGs(electrocardiograms) from the MIT-BIH database and the PRD(Percent RMS Difference) and the CR(Compression Ratio) are calculated. It is found that the algorithm achieved a high level of compression performance with 1.82 of PRD and 8.82:1 of CR in average.

Published in:

Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE

Date of Conference:

20-25 Aug. 2008