By Topic

Improved interactive medical image segmentation using Enhanced Intelligent Scissors (EIS)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Akshaya Mishra ; Systems Design Engineering, University of Waterloo, Canada ; Alexander Wong ; Wen Zhang ; David Clausi
more authors

A novel interactive approach called Enhanced Intelligent Scissors (EIS) is presented for segmenting regions of interest in medical images. The proposed interactive medical image segmentation algorithm addresses the issues associated with segmenting medical images and allows for fast, robust, and flexible segmentation without requiring accurate manual tracing. A robust complex wavelet phase-based representation is used as an external local cost to address issues associated with contrast non-uniformities and noise typically found in medical images. The boundary extraction problem is formulated as a Hidden Markov Model (HMM) and the novel approach to the second-order Viterbi algorithm with state pruning is used to find the optimal boundary in a robust and efficient manner based on the extracted external and internal local costs, thus handling much inexact user boundary definitions than existing methods. Experimental results using MR and CT images show that the proposed algorithm achieves accurate segmentation in medical images without the need for accurate boundary definition as per existing Intelligent Scissors methods. Furthermore, usability testing indicate that the proposed algorithm requires significantly less user interaction than Intelligent Scissors.

Published in:

2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

20-25 Aug. 2008