Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Diagnostic quality driven physiological data collection for personal healthcare

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jea, David ; University of California, Los Angeles, USA ; Balani, R. ; Ju-Lan Hsu ; Dae-Ki Cho
more authors

We believe that each individual is unique, and that it is necessary for diagnosis purpose to have a distinctive combination of signals and data features that fits the personal health status. It is essential to develop mechanisms for reducing the amount of data that needs to be transferred (to mitigate the troublesome periodically recharging of a device) while maintaining diagnostic accuracy. Thus, the system should not uniformly compress the collected physiological data, but compress data in a personalized fashion that preserves the “important” signal features for each individual such that it is enough to make the diagnosis with a required high confidence level. We present a diagnostic quality driven mechanism for remote ECG monitoring, which enables a notation of priorities encoded into the wave segments. The priority is specified by the diagnosis engine or medical experts and is dynamic and individual dependent. The system pre-processes the collected physiological information according to the assigned priority before delivering to the backend server. We demonstrate that the proposed approach provides accurate inference results while effectively compressing the data.

Published in:

Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE

Date of Conference:

20-25 Aug. 2008