By Topic

Learning under uncertainty in smart home environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shuai Zhang, ; School of Computing and Information Engineering, University of Ulster at Coleraine, Northern Ireland, BT52 1SA, UK ; McClean, S. ; Scotney, B. ; Nugent, C.

Technologies and services for the home environment can provide levels of independence for elderly people to support ‘ageing in place’. Learning inhabitants' patterns of carrying out daily activities is a crucial component of these technological solutions with sensor technologies being at the core of such smart environments. Nevertheless, identifying high-level activities from low-level sensor events can be a challenge, as information may be unreliable resulting in incomplete data. Our work addresses the issues of learning in the presence of incomplete data along with the identification and the prediction of inhabitants and their activities under such uncertainty. We show via the evaluation results that our approach also offers the ability to assess the impact of various sensors in the activity recognition process. The benefit of this work is that future predictions can be utilised in a proposed intervention mechanism in a real smart home environment.

Published in:

Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE

Date of Conference:

20-25 Aug. 2008