By Topic

BMI cyberworkstation: Enabling dynamic data-driven brain-machine interface research through cyberinfrastructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ming Zhao ; Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, USA ; Prapaporn Rattanatamrong ; Jack DiGiovanna ; Babak Mahmoudi
more authors

Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.

Published in:

2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

20-25 Aug. 2008