By Topic

Continuous decoding of finger position from surface EMG signals for the control of powered prostheses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Smith, R.J. ; Biomedical Engineering department at The Johns Hopkins University, Baltimore, MD, USA ; Tenore, F. ; Huberdeau, David ; Cummings, R.E.
more authors

As development toward multi-fingered dexterous prosthetic hands continues, there is a growing need for more flexible and intuitive control schemes. Through the use of generalized electrode placement and well-established methods of pattern recognition, we have developed a basis for asynchronous decoding of finger positions. With the present method, correlations as large as 0.91 and mean overall decoding errors of ∼11% have been achieved with average decoding errors of between decoded and actual conformation of the metacarpophalangeal joints of individual fingers. It is hoped that these results will serve as a foundation from which to encourage further investigation into more intuitive methods of myoelectric control of powered upper limb prostheses.

Published in:

Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE

Date of Conference:

20-25 Aug. 2008