By Topic

Ecological Interface Design of a Tactical Airborne Separation Assistance Tool

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
van Dam, S.B.J. ; Fac. of Aerosp. Eng., Delft Univ. of Technol., Delft ; Mulder, M. ; van Paassen, M.M.

In a free-flight airspace environment, pilots have more freedom to choose user-preferred trajectories. An onboard pilot support system is needed that exploits travel freedom while maintaining spatial separation with other traffic. Ecological interface design is used to design an interface tool that assists pilots with the tactical planning of efficient conflict-free trajectories toward their destination. Desired pilot actions emerge from the visualization of workspace affordances in terms of a suitable description of aircraft (loco)motion. Traditional models and descriptions for aircraft motion cannot be applied efficiently for this purpose. Through functional modeling, more suitable locomotion models for trajectory planning are analyzed. As a result, a novel interface, the state vector envelope, is presented that is intended to provide the pilot with both low-level information, allowing direct action, and high-level information, allowing conflict understanding and situation awareness.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:38 ,  Issue: 6 )