By Topic

A Hybrid Particle Swarm Branch-and-Bound (HPB) Optimizer for Mixed Discrete Nonlinear Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Salam Nema ; Dept. of Electr. Eng. & Electron., Liverpool Univ., Liverpool ; John Goulermas ; Graham Sparrow ; Phil Cook

This paper proposes a new algorithm for solving mixed discrete nonlinear programming (MDNLP) problems, designed to efficiently combine particle swarm optimization (PSO), which is a well-known global optimization technique, and branch-and-bound (BB), which is a widely used systematic deterministic algorithm for solving discrete problems. The proposed algorithm combines the global but slow search of PSO with the rapid but local search capabilities of BB, to simultaneously achieve an improved optimization accuracy and a reduced requirement for computational resources. It is capable of handling arbitrary continuous and discrete constraints without the use of a penalty function, which is frequently cumbersome to parameterize. At the same time, it maintains a simple, generic, and easy-to-implement architecture, and it is based on the sequential quadratic programming for solving the NLP subproblems in the BB tree. The performance of the new hybrid PSO-BB architecture algorithm is evaluated against real-world MDNLP benchmark problems, and it is found to be highly competitive compared with existing algorithms.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:38 ,  Issue: 6 )