By Topic

Integration of Speech Recognition and Machine Translation in Computer-Assisted Translation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khadivi, S. ; Dept. of Comput. Sci., RWTH Aachen Univ., Aachen ; Ney, H.

Parallel integration of automatic speech recognition (ASR) models and statistical machine translation (MT) models is an unexplored research area in comparison to the large amount of works done on integrating them in series, i.e., speech-to-speech translation. Parallel integration of these models is possible when we have access to the speech of a target language text and to its corresponding source language text, like a computer-assisted translation system. To our knowledge, only a few methods for integrating ASR models with MT models in parallel have been studied. In this paper, we systematically study a number of different translation models in the context of the N-best list rescoring. As an alternative to the N -best list rescoring, we use ASR word graphs in order to arrive at a tighter integration of ASR and MT models. The experiments are carried out on two tasks: English-to-German with an ASR vocabulary size of 17 K words, and Spanish-to-English with an ASR vocabulary of 58 K words. For the best method, the MT models reduce the ASR word error rate by a relative of 18% and 29% on the 17 K and the 58 K tasks, respectively.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 8 )