By Topic

Epoch Extraction From Speech Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Murty, K.S.R. ; Dept. of Comput. Sci. & Eng., Indian Inst. of Technol., Chennai ; Yegnanarayana, B.

Epoch is the instant of significant excitation of the vocal-tract system during production of speech. For most voiced speech, the most significant excitation takes place around the instant of glottal closure. Extraction of epochs from speech is a challenging task due to time-varying characteristics of the source and the system. Most epoch extraction methods attempt to remove the characteristics of the vocal-tract system, in order to emphasize the excitation characteristics in the residual. The performance of such methods depends critically on our ability to model the system. In this paper, we propose a method for epoch extraction which does not depend critically on characteristics of the time-varying vocal-tract system. The method exploits the nature of impulse-like excitation. The proposed zero resonance frequency filter output brings out the epoch locations with high accuracy and reliability. The performance of the method is demonstrated using CMU-Arctic database using the epoch information from the electroglottograph as reference. The proposed method performs significantly better than the other methods currently available for epoch extraction. The interesting part of the results is that the epoch extraction by the proposed method seems to be robust against degradations like white noise, babble, high-frequency channel, and vehicle noise.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 8 )