By Topic

Optimizing the Performance of Spoken Language Recognition With Discriminative Training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Donglai Zhu ; Human Language Technol. Dept., Inst. for Infocomm Res., Singapore ; Haizhou Li ; Bin Ma ; Chin-Hui Lee

The performance of spoken language recognition system is typically formulated to reflect the detection cost and the strategic decision points along the detection-error-tradeoff curve. We propose a performance metrics optimization (PMO) approach to optimizing the detection performance of Gaussian mixture model classifiers. We design the objective functions to directly relate the model parameters to the performance metrics of interest, i.e., the detection cost function and the area under the detection-error-tradeoff curve. Both metrics are approximated by differentiable functions of model parameters. In this way, the model parameters can be optimized with the generalized probabilistic descent algorithm, a typical discriminative training technique. We conduct the experiments on the NIST 2003 and 2005 Language Recognition Evaluation corpora. The experimental results show that the PMO approach effectively improves the performance over the maximum-likelihood training approach.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:16 ,  Issue: 8 )