Cart (Loading....) | Create Account
Close category search window
 

Transient analysis of stochastic switches and trajectories with applications to gene regulatory networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Munsky, B. ; Center for Control, Univ. of California, Santa Barbara, CA ; Khammash, M.

Many gene regulatory networks are modelled at the mesoscopic scale, where chemical populations change according to a discrete state (jump) Markov process. The chemical master equation (CME) for such a process is typically infinite dimensional and unlikely to be computationally tractable without reduction. The recently proposed finite state projection (FSP) technique allows for a bulk reduction of the CME while explicitly keeping track of its own approximation error. In previous work, this error has been reduced in order to obtain more accurate CME solutions for many biological examples. Here, it is shown that this dasiaerrordasia has far more significance than simply the distance between the approximate and exact solutions of the CME. In particular, the original FSP error term serves as an exact measure of the rate of first transition from one system region to another. As such, this term enables one to (i) directly determine the statistical distributions for stochastic switch rates, escape times, trajectory periods and trajectory bifurcations, and (ii) evaluate how likely it is that a system will express certain behaviours during certain intervals of time. This article also presents two systems-theory based FSP model reduction approaches that are particularly useful in such studies. The benefits of these approaches are illustrated in the analysis of the stochastic switching behaviour of Gardnerdasias genetic toggle switch.

Published in:

Systems Biology, IET  (Volume:2 ,  Issue: 5 )

Date of Publication:

September 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.