By Topic

Minimum airgap flux linkage requirement for self-excitation in stand-alone induction generators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ojo, O. ; Dept. of Electr. Eng., Tennessee Technol. Univ., Cookeville, TN, USA

A minimum airgap flux linkage is required for the self-excitation and stable operation of an isolated induction generator feeding an impedance load. With the aid of bifurcation theory, it is shown that the minimum airgap flux linkage requirement is the value at which the derivative of the magnetizing inductance with respect to the airgap flux linkage is zero. This minimum airgap flux linkage determines the minimum or maximum load impedance and minimum excitation capacitance requirements. This result is demonstrated using single-phase and three-phase induction generators

Published in:

Energy Conversion, IEEE Transactions on  (Volume:10 ,  Issue: 3 )