By Topic

A DC linear motor with a square armature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Basak ; Wolfson Centre for Magnetics Technol., Univ. of Wales Coll. of Cardiff, UK ; F. J. Anayi

One of the advantages in using DC linear motors for low speed linear drives is that the position and speed of these motors can be precisely controlled with the help of a feedback circuit. In addition, linear motors get rid of the rotary-to-linear conversion mechanism, hence reduce the weight cost backlash and dynamic complexity which produces friction, and eventually minimizes the space required by the drive. The neodymium-iron-boron (NdFeB) permanent magnet with high energy product has been used as the field source of these motors thus reducing the size and weight of the motors further. This paper describes the analysis of flux and force in a DC linear stepping motor built with NdFeB magnets. In order to verify the experimental results obtained for determining the performance of the motor, a computational method has been employed to compute the flux distributions throughout the machine. The discrepancy between the measured and computed values of axial and radial flux at most points ranges between 8% and 16% while the discrepancy between the measured and computed values of starting thrust is in the range between 4% and 13%

Published in:

IEEE Transactions on Energy Conversion  (Volume:10 ,  Issue: 3 )