By Topic

Decoding of Individuated Finger Movements Using Surface Electromyography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Upper limb prostheses are increasingly resembling the limbs they seek to replace in both form and functionality, including the design and development of multifingered hands and wrists. Hence, it becomes necessary to control large numbers of degrees of freedom (DOFs), required for individuated finger movements, preferably using noninvasive signals. While existing control paradigms are typically used to drive a single-DOF hook-based configurations, dexterous tasks such as individual finger movements would require more elaborate control schemes. We show that it is possible to decode individual flexion and extension movements of each finger (ten movements) with greater than 90% accuracy in a transradial amputee using only noninvasive surface myoelectric signals. Further, comparison of decoding accuracy from a transradial amputee and able-bodied subjects shows no statistically significant difference ( p < 0.05) between these subjects. These results are encouraging for the development of real-time control strategies based on the surface myoelectric signal to control dexterous prosthetic hands.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 5 )