Cart (Loading....) | Create Account
Close category search window
 

Near-maximum-likelihood detectors for binary signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ser, W. ; Singapore Ministry of Defence, Tanglin, Singapore ; Clark, A.P.

The paper studies three developments of a class of near-maximum-likelihood detection processes derived from a conventional nonlinear (decision feedback) equaliser. The new detectors are suitable for binary signals transmitted over a linear baseband channel introducing severe amplitude distortion. The complexity of the processes is not excessive, and increases approximately linearly with the delay in detection. Thus, a sufficiently large delay in detection can be employed to achieve a near-optimum tolerance to noise when the received signal has been very severely distorted. The paper describes three novel detection processes, and presents the results of computer simulation tests, comparing the tolerances to additive white Gaussian noise of various arrangements of each detector with that of the optimum detector of the given class and that of a conventional nonlinear equaliser. Three different channels are used in the tests and binary signals are transmitted in every case.

Published in:

Communications, Radar and Signal Processing, IEE Proceedings F  (Volume:132 ,  Issue: 6 )

Date of Publication:

October 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.