By Topic

Texture classification using noncausal hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Povlow, B.R. ; Locheed Martin Astro Space, Princeton, NJ, USA ; Dunn, S.M.

This paper addresses the problem of using noncausal hidden Markov models (HMMs) for texture classification. In noncausal models, the state of each pixel may be dependent on its neighbors in all directions. New algorithms are given to learn the parameters of a noncausal HMM of a texture and to classify it into one of several learned categories. Texture classification results using these algorithms are provided

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 10 )