By Topic

Person identification using multiple cues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Brunelli ; Istituto per la Ricerca Sci. e Tecnologica, Trento, Italy ; D. Falavigna

This paper presents a person identification system based on acoustic and visual features. The system is organized as a set of non-homogeneous classifiers whose outputs are integrated after a normalization step. In particular, two classifiers based on acoustic features and three based on visual ones provide data for an integration module whose performance is evaluated. A novel technique for the integration of multiple classifiers at an hybrid rank/measurement level is introduced using HyperBF networks. Two different methods for the rejection of an unknown person are introduced. The performance of the integrated system is shown to be superior to that of the acoustic and visual subsystems. The resulting identification system can be used to log personal access and, with minor modifications, as an identity verification system.<>

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:17 ,  Issue: 10 )