Cart (Loading....) | Create Account
Close category search window

MINPRAN: a new robust estimator for computer vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Stewart, C.V. ; Dept. of Comput. Sci., Rensselaer Polytech. Inst., Troy, NY, USA

MINPRAN is a new robust estimator capable of finding good fits in data sets containing more than 50% outliers. Unlike other techniques that handle large outlier percentages, MINPRAN does not rely on a known error bound for the good data. Instead, it assumes the bad data are randomly distributed within the dynamic range of the sensor. Based on this, MINPRAN uses random sampling to search for the fit and the inliers to the fit that are least likely to have occurred randomly. It runs in time O(N2+SN log N), where S is the number of random samples and N is the number of data points. We demonstrate analytically that MINPRAN distinguished good fits to random data and MINPRAN finds accurate fits and nearly the correct number of inliers, regardless of the percentage of true inliers. We confirm MINPRAN's properties experimentally on synthetic data and show it compares favorably to least median of squares. Finally, we apply MINPRAN to fitting planar surface patches and eliminating outliers in range data taken from complicated scenes

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 10 )

Date of Publication:

Oct 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.