By Topic

Space vector PWM control of dual three-phase induction machine using vector space decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhao, Y. ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Lipo, T.A.

The technique of vector space decomposition control of voltage source inverter fed dual three-phase induction machines is presented in this paper. By vector space decomposition, the analytical modeling and control of the machine are accomplished in three two-dimensional orthogonal subspaces and the dynamics of the electromechanical energy conversion related and the nonelectromechanical energy conversion related machine variables are thereby totally decoupled. A space vector PWM technique is also developed based on the vector space decomposition to limit the 5th, 7th, 17th, 19th,... harmonic currents which in such a system would be otherwise difficult to control. The techniques developed in this paper can be generalized for the control of an induction machine with an arbitrary number of phases

Published in:

Industry Applications, IEEE Transactions on  (Volume:31 ,  Issue: 5 )