By Topic

Collaborative wideband sensing for cognitive radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhi Quan ; Univ. of California, Los Angeles, CA ; Shuguang Cui ; Poor, H.V. ; Sayed, A.H.

Cognitive radio (CR) has recently emerged as a promising technology to revolutionize spectrum utilization in wireless communications. In a CR network, secondary users continuously sense the spectral environment and adapt transmission parameters to opportunistically use the available spectrum. A fundamental problem for CRs is spectrum sensing; secondary users need to reliably detect weak primary signals of possibly different types over a targeted wide frequency band in order to identify spectral holes for opportunistic communications. Conceptually and practically, there is growing awareness that collaboration among several CRs can achieve considerable performance gains. This article provides an overview of the challenges and possible solutions for the design of collaborative wideband sensing in CR networks. It is argued that collaborative spectrum sensing can make use of signal processing gains at the physical layer to mitigate strict requirements on the radio frequency front-end and to exploit spatial diversity through network cooperation to significantly improve sensing reliability.

Published in:

Signal Processing Magazine, IEEE  (Volume:25 ,  Issue: 6 )