By Topic

Hot-carrier effects in submicrometre MOS VLSIs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Takeda, E. ; Hitachi Ltd., Central Research Laboratory, Kitatama, Japan

Hot-carrier effects in submicrometre MOS VLSI circuits are described in terms of (a) the hot-carrier injection mechanisms, (b) the device degradation, (c) the hot-carrier resistant device structures and (d) the hot-carrier phenomena under a bias of less than 3 V. Two significant hot-carrier injection mechanisms are proposed which are different from those of the channel hot-electron (CHE) and substrate hot-electron (SHE) injection as previously reported by Ning et al. They are (i) drain avalanche hot-carrier (DAHC) and (ii) secondarily generated hot-electron (SGHE) injection. Based on an experimental comparison of gate currents due to these mechanisms it is shown that DAHC imposes the most severe constraint on VLSI design. In addition, hot-carrier resistant device structures, such as an As-P double diffused drain (DDD) and lightly doped drain (LDD), are also described as so called `drain engineering techniques¿ to enhance reliability of MOS devices. Finally, in anticipation of a possible reduction in power supply voltages in the future, hot-carrier phenomena have been investigated at bias levels below 3 V, where hot carriers cannot obtain enough energy to surmount the Si-SiO2 barrier. The experimental results clearly show that device degradation due to hot-carrier injection occurs even at VD < 3 V. Thus, hot carrier effects remain one of the most stringent limiting factors affecting submicrometre MOSFETs, even after the power supply voltage is reduced.

Published in:

Solid-State and Electron Devices, IEE Proceedings I  (Volume:131 ,  Issue: 5 )