Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Latent Palmprint Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jain, A.K. ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI ; Jianjiang Feng

The evidential value of palmprints in forensics is clear as about 30% of the latents recovered from crime scenes are from palms. While palmprint-based personal authentication systems have been developed, they mostly deal with low resolution (about 100 ppi) palmprints and only perform full-to-full matching. We propose a latent-to-full palmprint matching system that is needed in forensics. Our system deals with palmprints captured at 500 ppi and uses minutiae as features. Latent palmprint matching is a challenging problem because latents lifted at crime scenes are of poor quality, cover small area of palms and have complex background. Other difficulties include the presence of many creases and a large number of minutiae in palmprints. A robust algorithm to estimate ridge direction and frequency in palmprints is developed. This facilitates minutiae extraction even in poor quality palmprints. A fixed-length minutia descriptor, MinutiaCode, is utilized to capture distinctive information around each minutia and an alignment-based matching algorithm is used to match palmprints. Two sets of partial palmprints (150 live-scan partial palmprints and 100 latents) are matched to a background database of 10,200 full palmprints to test the proposed system. Rank-1 recognition rates of 78.7% and 69%, respectively, were achieved for live-scan palmprints and latents.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 6 )