By Topic

Extracting Takagi-Sugeno Fuzzy Rules with Interpretable Submodels via Regularization of Linguistic Modifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shang-Ming Zhou ; Dept. of Inf., De Montfort Univ., Leicester ; Gan, J.Q.

In this paper, a method for constructing Takagi-Sugeno (TS) fuzzy system from data is proposed with the objective of preserving TS submodel comprehensibility, in which linguistic modifiers are suggested to characterize the fuzzy sets. A good property held by the proposed linguistic modifiers is that they can broaden the cores of fuzzy sets while contracting the overlaps of adjoining membership functions (MFs) during identification of fuzzy systems from data. As a result, the TS submodels identified tend to dominate the system behaviors by automatically matching the global model (GM) in corresponding subareas, which leads to good TS model interpretability while producing distinguishable input space partitioning. However, the GM accuracy and model interpretability are two conflicting modeling objectives, improving interpretability of fuzzy models generally degrades the GM performance of fuzzy models, and vice versa. Hence, one challenging problem is how to construct a TS fuzzy model with not only good global performance but also good submodel interpretability. In order to achieve a good tradeoff between GM performance and submodel interpretability, a regularization learning algorithm is presented in which the GM objective function is combined with a local model objective function defined in terms of an extended index of fuzziness of identified MFs. Moreover, a parsimonious rule base is obtained by adopting a QR decomposition method to select the important fuzzy rules and reduce the redundant ones. Experimental studies have shown that the TS models identified by the suggested method possess good submodel interpretability and satisfactory GM performance with parsimonious rule bases.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 8 )