Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Cross-layer network planning for multi-radio multi-channel cognitive wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kai Yang ; Dept. of Electr. Eng., Columbia Univ., New York, NY ; Xiaodong Wang

We propose a general network planning framework for multi-radio multi-channel wireless networks. Under this framework, data routing, resource allocation, and scheduling are jointly designed to maximize a network utility function. We first treat such a cross-layer design problem with fixed radio distributions across the nodes and formulate it as a large-scale convex optimization problem. A primal-dual method together with the column-generation technique is proposed to efficiently solve this problem. We then consider the radio allocation problem, i.e., the optimal placement of radios within the network to maximize the network utility function. This problem is formulated as a large- scale combinatorial optimization problem. We derive the necessary conditions that the optimal solution should satisfy, and then develop a sequential optimization scheme to solve this problem. Simulation studies are carried out to assess the performance of the proposed cross-layer network planning framework. It is seen that the proposed approach can significantly enhance the overall network performance.

Published in:

Communications, IEEE Transactions on  (Volume:56 ,  Issue: 10 )