By Topic

P-order metric UWB receiver structures with superior performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. C. Beaulieu ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB ; Hua Shao ; J. Fiorina

The generalized Gaussian probability density function is shown to better approximate the probability density function of the multiple access interference in ultra-wide bandwidth systems than the Gaussian approximation and the Laplacian density approximation. Two ultra-wide bandwidth receiver structures based on this new approximation using a p-order metric receiver decision statistic are investigated for the detection of time-hopping ultra-wide bandwidth wireless signals in multiple access interference channels. The first receiver outperforms both the conventional matched filter ultra-wide bandwidth receiver and the soft-limiting ultra-wide bandwidth receiver when only multiple access interference is present in UWB channels. The second new receiver with adaptive limiting threshold outperforms the conventional matched filter ultra-wide bandwidth receiver, the soft-limiting ultra-wide bandwidth receiver, and the adaptive threshold soft limiting ultra-wide bandwidth receiver in all multiple access interference-plus-noise environments. In multipath channels, a new Rake receiver based on the p-order metric receiver is proposed for signal detection. Mathematical analysis and numerical results show that this new Rake receiver can achieve larger signal-to-interference-plus-noise ratio than the standard matched filter Rake receiver when multipath components are resolvable in UWB channels.

Published in:

IEEE Transactions on Communications  (Volume:56 ,  Issue: 10 )