Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Capacity of channels with multistage successive refinement of quantized feedback information via noisy links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Layec, P. ; Orange Labs., Issy-les-Moulineaux ; Piantanida, P. ; Visoz, R. ; Berthet, A.O.

Traditional information-theoretic approaches to study channel feedback assume that the information is sent from the receiver to the transmitter via an ideal (instantaneous high-rate and error-free) feedback link. This paper investigates the problem of reliable communication over non-ergodic memoryless (stationary) channels using non-errorfree feedback links. We first provide a coding theorem showing that the estimation-induced outage (EIO) capacity is achieved by using rate splitting and hierarchical encoding, where the codes of different layers are jointly designed to exploit the feedback information. The feedback encoder uses hierarchical quantization to compress the state information, allowing the forward encoder to obtain successive refinement of the feedback information during the transmission. The capacity is evaluated for a fading MIMO channel assuming a single-antenna fading feedback link and imperfect channel estimation at the receiver. Simulation results show the joint impact of: (i) successive refinement of quantized feedback, (ii) noisy feedback and (iii) imperfect channel estimation, on the EIO capacity.

Published in:

Signal Processing Advances in Wireless Communications, 2008. SPAWC 2008. IEEE 9th Workshop on

Date of Conference:

6-9 July 2008