By Topic

An infinite user model for random access protocols assisted by multipacket reception and retransmission diversity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samano-Robles, R. ; Sch. of Electron. & Electr. Eng., Univ. of Leeds, Leeds ; Ghogho, M. ; McLernon, D.C.

The study of random access protocols has recently regained attention due to new cross-layer schemes such as multipacket reception (MPR) systems and network diversity multiple access protocols (NDMA). Despite their relevance, these two systems have only been simultaneously studied employing finite user population models and considering perfect detection of the active users, which are assumptions only useful in scenarios with low numbers of users and high values of the SNR. The purpose of this paper is to introduce an infinite user population model, valid for scenarios with large numbers of users and finite traffic loads, which allows us to extend the available results on ALOHA MPR protocols to systems that use retransmission diversity (RD). Unlike existing approaches our model includes both the effects of packet decoding errors and the effects of imperfect detection of the active users, which considerably affect the performance of conventional NDMA systems in finite SNR environments. Additionally, the proposed model provides a better approximation to the queuing delay of NDMA protocols than the conventional formula of an M/G/1 queue with vacations. Finally, the proposed algorithm also represents an extension and generalization of contention binary tree algorithms assisted by signal processing tools such as SICTA (successive interference cancellation tree algorithm) and other algorithms assisted by source separation. The benefits of the proposed model are assessed using simulation and analytic results.

Published in:

Signal Processing Advances in Wireless Communications, 2008. SPAWC 2008. IEEE 9th Workshop on

Date of Conference:

6-9 July 2008