By Topic

Robust closed-form localization of mobile targets using a single sensor based on a non-linear measurement model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xu Chen ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Chicago, Chicago, IL ; Schonfeld, D. ; Khokhar, A.

In this paper, we propose a robust novel approach with closed-form estimator for object tracking based on a non-linear measurement model over time from a single sensor with arbitrary noise degradation. Relying on the widely-used dynamic motion model for arbitrary moving targets, tracking of moving objects can be formulated using received signal strength (RSS) measurements. We provide a closed-form solution that integrates localization and filtering for both an ideal channel as well as noisy channel. We first derive an exact linear model from the non-linear system of equations provided by the RSS measurements. We subsequently present an iterative method to estimate the unknown parameters and the error covariance matrix. Moreover, we prove that the estimator gives more accuracy when the number of samples increases. The Cramer-Rao bound (CRB) for the estimator are determined in Gaussian case. Computer simulation demonstrates that the proposed approach not only achieves more accuracy than traditional methods but also saves significant computation time.

Published in:

Signal Processing Advances in Wireless Communications, 2008. SPAWC 2008. IEEE 9th Workshop on

Date of Conference:

6-9 July 2008