By Topic

ILP-based scheme for timing variation-aware scheduling and resource binding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yibo Chen ; Comput. Sci. & Eng. Dept., Pennsylvania State Univ., University Park, PA ; Jin Ouyang ; Yuan Xie

The impact of process variations on circuit timing increases rapidly as technology scales. Consequently, it is important to consider timing variations at the early stages of circuit designs. Conventional high level synthesis relies on the worst-case delay analysis to guide the design space exploration, however, such worst-case timing analysis can results in overly conservative designs with pessimistic performance estimation. This paper presents a 0-1 integer linear programming (ILP) formulation that aims at reducing the impact of timing variations in high-level synthesis, by integrating overall timing yield constraints into scheduling and resource binding. The proposed approach focuses on how to achieve the maximum performance (minimum latency) under given timing yield constraints with affordable computation time. Experiment results show that significant latency reduction is achieved under different timing yield constraints, compared to traditional worst-case based approach.

Published in:

SOC Conference, 2008 IEEE International

Date of Conference:

17-20 Sept. 2008