By Topic

Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sean T. Nicolson ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON ; Pascal Chevalier ; Bernard Sautreuil ; Sorin P. Voinigescu

This paper presents the first single-chip direct-conversion 77-85 GHz transceiver fabricated in SiGe HBT technology, intended for Doppler radar and millimeter-wave imaging, particularly within the automotive radar band of 77-81 GHz. A 1.3 mm times 0.9 mm 86-96 GHz receiver is also presented. The transceiver, fabricated in a 130 nm SiGe HBT technology with fT/fMAX of 230/300 GHz, consumes 780 mW, and occupies 1.3 mm times 0.9 mm of die area. Furthermore, it achieves 40 dB conversion gain in the receiver at 82 GHz, a 3 dB bandwidth extending from 77 to 85 GHz at 25degC, and covering the entire 77-81 GHz band up to 100degC, record 3.85 dB DSB noise figure measured at 82 GHz LO and 1 GHz IF, and an IP1dB of -35 dBm. The transmitter provides + 11.5 dBm of saturated output power at 77 GHz, and a divide64 static frequency divider is included on-die. Successful detection of a Doppler shift of 30 Hz at a range of 6 m is shown. The 86-96 GHz receiver achieves 31 dB conversion gain, a 3 dB bandwidth of 10 GHz, and 5.2 dB DSB noise figure at 96 GHz LO and 1 GHz IF, and -99 dBc/Hz phase noise at 1 MHz offset. System-level layout and integration techniques that address the challenges of low-voltage transceiver implementation are also discussed.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:43 ,  Issue: 10 )