Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Output Feedback NN Control for Two Classes of Discrete-Time Systems With Unknown Control Directions in a Unified Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chenguang Yang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Ge, S.S. ; Cheng Xiang ; Tianyou Chai
more authors

In this paper, output feedback adaptive neural network (NN) controls are investigated for two classes of nonlinear discrete-time systems with unknown control directions: (1) nonlinear pure-feedback systems and (2) nonlinear autoregressive moving average with exogenous inputs (NARMAX) systems. To overcome the noncausal problem, which has been known to be a major obstacle in the discrete-time control design, both systems are transformed to a predictor for output feedback control design. Implicit function theorem is used to overcome the difficulty of the nonaffine appearance of the control input. The problem of lacking a priori knowledge on the control directions is solved by using discrete Nussbaum gain. The high-order neural network (HONN) is employed to approximate the unknown control. The closed-loop system achieves semiglobal uniformly-ultimately-bounded (SGUUB) stability and the output tracking error is made within a neighborhood around zero. Simulation results are presented to demonstrate the effectiveness of the proposed control.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 11 )