Cart (Loading....) | Create Account
Close category search window

ICA Color Space for Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chengjun Liu ; Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ ; Jian Yang

This paper presents a novel independent component analysis (ICA) color space method for pattern recognition. The novelty of the ICA color space method is twofold: 1) deriving effective color image representation based on ICA, and 2) implementing efficient color image classification using the independent color image representation and an enhanced Fisher model (EFM). First, the ICA color space method assumes that each color image is defined by three independent source images, which can be derived by means of a blind source separation procedure, such as ICA. Unlike the RGB color space, where the R , G, and B component images are correlated, the new ICA color space method derives three component images C 1 , C 2 , and C 3 that are independent and hence uncorrelated. Second, the three independent color component images are concatenated to form an augmented pattern vector, whose dimensionality is reduced by principal component analysis (PCA). An EFM then derives the discriminating features of the reduced pattern vector for pattern recognition. The effectiveness of the proposed ICA color space method is demonstrated using a complex grand challenge pattern recognition problem and a large scale database. In particular, the face recognition grand challenge (FRGC) and the biometric experimentation environment (BEE) reveal that for the most challenging FRGC version 2 Experiment 4, which contains 12 776 training images, 16 028 controlled target images, and 8014 uncontrolled query images, the ICA color space method achieves the face verification rate (ROC III) of 73.69% at the false accept rate (FAR) of 0.1%, compared to the face verification rate (FVR) of 67.13% of the RGB color space (using the same EFM) and 11.86% of the FRGC baseline algorithm at the same FAR.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.