Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

On Nonlinear H_{\infty } Filtering for Discrete-Time Stochastic Systems With Missing Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Bo Shen ; Sch. of Inf. Sci. & Technol., Donghua Univ., Shanghai ; Zidong Wang ; Huisheng Shu ; Guoliang Wei

In this paper, the H infin filtering problem is investigated for a general class of nonlinear discrete-time stochastic systems with missing measurements. The system under study is not only corrupted by state-dependent white noises but also disturbed by exogenous inputs. The measurement output contains randomly missing data that is modeled by a Bernoulli distributed white sequence with a known conditional probability. A filter of very general form is first designed such that the filtering process is stochastically stable and the filtering error satisfies H infin performance constraint for all admissible missing observations and nonzero exogenous disturbances under the zero-initial condition. The existence conditions of the desired filter are described in terms of a second-order nonlinear inequality. Such an inequality can be decoupled into some auxiliary ones that can be solved independently by taking special form of the Lyapunov functionals. As a consequence, a linear time-invariant filter design problem is discussed for the benefit of practical applications, and some simplified conditions are obtained. Finally, two numerical simulation examples are given to illustrate the main results of this paper.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 9 )