Cart (Loading....) | Create Account
Close category search window
 

Mixed Deterministic/Randomized Methods for Fixed Order Controller Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fujisaki, Y. ; Dept. of Comput. Sci. & Syst. Eng., Kobe Univ., Kobe ; Oishi, Y. ; Tempo, R.

In this paper, we propose a general methodology for designing fixed order controllers for single-input single-output plants. The controller parameters are classified into two classes: randomized and deterministically designed. For the first class, we study randomized algorithms. In particular, we present two low-complexity algorithms based on the Chernoff bound and on a related bound (often called ldquolog-over-logrdquo bound) which is generally used for optimization problems. Secondly, for the deterministically designed parameters, we reformulate the original problem as a set of linear equations. Then, we develop a technique which efficiently solves it using a combination of matrix inversions and sensitivity methods. A detailed complexity analysis of this technique is carried on, showing its superiority (from the computational point of view) to existing algorithms based on linear programming. In the second part of the paper, these results are extended to H infin performance. One of the contributions is to prove that the deterministically designed parameters enjoy a special convex characterization. This characterization is then exploited in order to design fixed order controllers efficiently. We then show further extensions of these methods for stabilization of interval plants. In particular, we derive a simple one-parameter formula for computing the so-called critical frequencies which are required by the algorithms.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 9 )

Date of Publication:

Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.