By Topic

Coupled resonator filter with single-layer acoustic coupler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jamneala, T. ; Avago Technol. Inc., San Jose, CA ; Small, M. ; Ruby, R. ; Larson, J.D., III.

We discuss the operation of novel coupled-resonator filters with single-layer acoustic couplers. Our analysis employs the physical Mason model for acoustic resonators. Their simpler fabrication process is counterbalanced by the high acoustic attenuation of suitable coupler materials. At high levels of attenuation, both the phase and the acoustic impedance must be treated as complex quantities to accurately predict the filter insertion loss. We demonstrate that the typically poor near-band rejection of coupled resonator filters can be improved at the die level by connecting a small capacitance between the input and output of the filter to produce a pair of tunable transmission minima. We make use of these theoretical findings to fabricate coupled resonators filters operating at 2.45 GHz.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 10 )