By Topic

A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paloscia, S. ; Consiglio Naz. delle Ric., Ist. di Fis. Applicata Nello Carrara, Florence ; Pampaloni, P. ; Pettinato, S. ; Santi, E.

In this paper, we present an intercomparison of algorithms for retrieving soil moisture content (SMC) from ENVIronmental SATtellite (ENVISAT)/Advanced Synthetic Aperture Radar images. The algorithms taken into consideration were a feedforward artificial neural network (ANN) with two hidden layers, a statistical approach based on Bayes' theorem, and an iterative algorithm based on the nelder-mead direct-search method. The comparison was carried out by using both simulated and experimental data. Simulated data were obtained by means of the integral equation model (IEM). Experimental data were collected in an agricultural area in Northern Italy during 2003-2005; they included backscattering coefficient at HH and HV polarizations and at an incidence angle of thetas = 23deg, as well as detailed ground truth measurements of SMC, surface roughness, and vegetation parameters. HH-polarized data were related to SMC, whereas the information of the cross-polarized channel was used to correct the backscatter for the effects of surface roughness. A comparison of the algorithms with experimental data showed that all the tested approaches produced SMC values that are very close to the measured ones. However, the predictions of the ANN were slightly more suitable than the other methods for generating maps in reasonable time. The production of moisture maps carried out at different dates using this algorithm pointed out the feasibility of separating up to six levels of spatial/temporal variations of SMC in the range of 10%-35%.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 10 )