By Topic

Optimal Estimation of Calibration Parameters in Polarimetric Microwave Radiometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Derek Hudson ; Brigham Young Univ., Provo, UT ; David G. Long

Methods for internal calibration of a certain class of microwave polarimetric radiometers are presented by Piepmeier. In that work, the calibration parameters are estimated algebraically. We demonstrate that Bayesian estimation decreases the root-mean-square error of the estimates by a factor of two. This improvement is obtained by using knowledge of the noise structure of the measurements and by utilizing all of the information provided by the measurements. Drawbacks are the increased complexity of the method and an increase in computation. We also extend the method to estimate several hardware component parameters of interest in system calibration.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:46 ,  Issue: 10 )