By Topic

Improved Sampling Methods for Shape Reconstruction of 3-D Buried Targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ilaria Catapano ; Ist. per il Rilevamento Elettro- magnetico dell'Ambiente, Consiglio Naz. delle Ric., Naples ; Lorenzo Crocco ; Tommaso Isernia

This paper addresses the problem of reconstructing geometrical features of 3-D targets embedded into a nonaccessible region from multiview multistatic scattered field data. Sampling methods (SM) are simple and computationally effective approaches to pursue this task. However, their implementation requires a large number of multipolarization sources and probes. Moreover, their performances are often unsatisfactory for aspect-limited measurement configurations and lossy media. In order to tackle these drawbacks, usually faced in subsurface imaging, we propose a simplified and improved formulation based on the physical interpretation of SM. In particular, such a formulation relies on a small number of single polarization probes and exploits multifrequency data, for the first time in the framework of SM. The performances of the resulting approach are verified by monitoring 3-D regions of large extent.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:46 ,  Issue: 10 )