By Topic

\varepsilon -Optimal Non-Bayesian Anomaly Detection for Parametric Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lionel Fillatre ; FRE CNRS 2848, Univ. de Technol. de Troyes, Troyes ; Igor Nikiforov ; Florent Retraint

The non-Bayesian detection of an anomaly from a single or a few noisy tomographic projections is considered as a statistical hypotheses testing problem. It is supposed that a radiography is composed of an imaged nonanomalous background medium, considered as a deterministic nuisance parameter, with a possibly hidden anomaly. Because the full voxel-by-voxel reconstruction is impossible, an original tomographic method based on the parametric models of the nonanomalous background medium and radiographic process is proposed to fill up the gap in the missing data. Exploiting this ldquoparametric tomography,rdquo a new detection scheme with a limited loss of optimality is proposed as an alternative to the nonlinear generalized likelihood ratio test, which is untractable in the context of nondestructive testing for the objects with uncertainties in their physical/geometrical properties. The theoretical results are illustrated by the processing of real radiographies for the nuclear fuel rod inspection.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 11 )