By Topic

Minimum Mean-Squared Error Estimation of Mel-Frequency Cepstral Coefficients Using a Novel Distortion Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Indrebo, K.M. ; Dept. of Electr. & Comput. Eng., Marquette Univ., Marquette, WI ; Povinelli, R.J. ; Johnson, M.T.

In this paper, a new method for statistical estimation of Mel-frequency cepstral coefficients (MFCCs) in noisy speech signals is proposed. Previous research has shown that model-based feature domain enhancement of speech signals for use in robust speech recognition can improve recognition accuracy significantly. These methods, which typically work in the log spectral or cepstral domain, must face the high complexity of distortion models caused by the nonlinear interaction of speech and noise in these domains. In this paper, an additive cepstral distortion model (ACDM) is developed, and used with a minimum mean-squared error (MMSE) estimator for recovery of MFCC features corrupted by additive noise. The proposed ACDM-MMSE estimation algorithm is evaluated on the Aurora2 database, and is shown to provide significant improvement in word recognition accuracy over the baseline.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 8 )